Neuro-wavelet parametric characterization of hardness profiles
نویسندگان
چکیده
This work compares a few attempts based on Neural and Wavelet networks, for extracting the Jominy hardness pro le of steels directly from the chemical composition. In particular, the paper proposes a multi-networks architecture, where a rst network is used as a parametric modeler of the Jominy pro le itself, while a second one is used as a parameter estimator from the steel chemical composition.
منابع مشابه
Neuro-Wavelet Networks applied to Parametric Characterization of Jominy Profiles of Steels
This work address the problem of extracting the Jominy hardness pro les of steels directly from the chemical composition. Wavelet and Neural networks provide very intresting results, especially when compared with classical methods. A hierarchical architecture is proposed, with a rst network used as a parametric modeler of the Jominy pro le, and a second one estimating parameters from the steel ...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملParametric Characterization of Jominy Pro les in Steel Industry by Means of Wavelet and Neural Networks
This work compares a few attempts based on Wavelet and Neural networks, for extracting the Jominy hardness pro les of steels directly from the chemical composition. That is essentially a black-box modeling problem: Wavelet and Neural networks seem powerful, especially when compared with classical methods commonly found in literature. In particular, the paper proposes a multi-network architectur...
متن کاملTraining Activation Function in Neuro-Wavelet Parametric Modeling
This work describes how to train the activation function in neuro-wavelet para-metric modeling. Training activation function signiicantly improves performance in a number of modeling, classii-cation and forecasting problems. Three diierent case studies from as many different application domains are considered and their performance compared with non-trained activation functions.
متن کاملTraining activation function in parametric classification
This w ork shows how to train the activation function in neuro-wavelet parametric modeling and how this improves performance in a number of modeling, classi cation and forecasting.
متن کامل